9. 金型内加工・組立て・複合技術

名称	方法。	解説
1)ダイスライド成形	一次射出で一次成形品を成形し、キャビティに	
(DSI, DRI)	残したまま金型を開き、ダイスライド機構を使っ	が開発。
	て一次成形品同士が突合わされる位置に移動	
		実用化した金型回転方式の方法
	間に二次射出で鉢巻状に射出し、一体化させ	
	る方法。金型内で精密中空成形品が得られ	
	る。	一次射出スライドニ次射出
	金型内で厚肉部のヒケ防止、ウエルドレス穴	加振装置を用いる方法として、下記のものがある。
①加振装置利用	加工、局部薄肉成形などを行う技術。	・日水加工/不二越が開発したもの *特公平5-9254
②エジェクタシリンダー	加振装置を用いて、プラスチックを軟化させて、	·住友重機械/三協化成が開発したプレス α
など利用	あるいはエジェクターシリンダーなどを用いて、	* プラスチックエージ、 40 (9)、p129(1994)
	金型内で打抜き、切断、押込みなどを行う技	エジェクターシリンダーなどを用いる方法として、下記のものがある。
	術。	・新潟鉄工のECS *プラスチックエージ、 40 (4)、p1(1994))
		・日精樹脂のマルチインナープレス * 合成樹脂、41(12)、p18(1995)
3)金型内組立て	成形工程だけで、かつ一成形サイクルで、各	セントラルファインツールがアッセンブル (**) 7ッセンブルはかはとは? (**) (**)
	パーツの成形からユニットの組立てまで行う	成形の名称で開発。
	技術。	Aキャビティで成形された部品はAの搬送位
		置におさまり、搬送ステーションが1ピッチだ
		け回転して、Bの搬送位置に移り、Bの部品
		が成形されて、A+Bとなる。これを繰り返す。
4)インサート成形		広い意味では、SPモールド貼合成形などもこの分類に入る。
	て、金型を閉めて射出成形して一体化する	インサートする部品の種類、形状等に合わ
	技術。本成形には、操作性から、竪型成形機	せた工夫が必要である。
	が用いられることが多い。	* プラスチックエージ、 44 (6)、p157
5)アウトサート成形	金属板などのベース(母体)を射出成形金型に	詳細はポリプラスチックの資料を参照くださ ** (**)
	セットして、プラスチックを射出して一体化する	インサート成形 アクトサート成形
0.15-	技術。	
6)フープ成形	アウトサート成形の1種として、あらかじめプレ	フープ成形には、竪型単動式射出成形機が使用される。
		小型のコネクタ端子などの短サイクルで大量生産される電気・電子部品の成形に
	材)を金型内に通し、フープ材上にプラスチック	用いられる。
	を成形する。成形後フープ材を一定量移動させ	*成形加工、4(5)、p277(1992)
	次の成形を行って、連続成形する。	
7) 封止成形	インサート成形の1種として、コイル、コンデン	一般のインサート成形より変形、密着性、電機特性などの要求性能が厳しく、デザイ
(デバイス成形)	サ、半導体等電子部品をインサートして、樹脂	ン、樹脂、成形条件等の十分な検討が必要である。
		* 第11回MIDにみる最近の技術開発動向と用途展開、p6(1998)
佐さ老 MTOサ後研究	で封止する技術。	<u>ユニチカが封止成形、中空封止成形を行っている。</u>

作成者:MTO技術研究所 桝井捷平